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ABSTRACT

Alternate integral forms for the cumulative probability distribution in terms of
the characteristic function are given. In particular, forms that can utilize a fast
Fourier transform (FFT) algorithm and special forms for one-sided probability deil-
sity functions are derived. For a special class of discrete random variables, all
integral evaluations are over a finite range. Some computational aspects of uti-
lizing the FFT are discussed.
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ALTERNATE FORMS AND COMPUTATIONAL CONSIDERATIONS FOR
NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY DISTRIBUTIONS

DIRECTLY FROM CHARACTERISTIC FUNCTIONS

1. INTRODUCTION

A recent report [1] on numerical evaluation of cumulative probability dis-
tribution functions directly from characteristic functions ((F) gave the cumula-
tive distribution functions (CDF) in terms of a single integral on the CF for both
continuous and discrete random variables (RV). In this report some alternate
forms for the CDF in terms of the CF will be presented, with an-aim toward
more accurate, efficient, and expeditious calculations. For the motivation of
this study and utility of the results, as well as numerical examples, see Ref-
erence 1

2. ANALYSIS

This section is composed of five subsections. In the first, general dis-
tributions are considered; in the second, specialization to a nonnegative random
variable is made. In both subsections, forms that utilize a fast Fourier trans-
form (FFT) are derived and their applicability is discussed. In the third and
fourth subsections, discrete random variables are considered. The former
subsection shows that the distribution function can be evaluated entirely in
terms of finite integrals; the latter subsection specializes to nonnegative dis-
crete random variables. The fifth subsection treats some computational
aspects of the FFT.

2.1 GENERAL DISTRIBUTIONS

Let RV x have probability density function (PDF) p(x) and CF f(t):

f() W fdx exp(ijx) px) , (1)

11

p(x) ---r [d exp(-ijx) f(J). 2
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(Integrals without limits are over the real axis from - o to o .) The
CDF Pr(K) is defined as the probability that RV x is less than or equal to X.
The modified distribution function (MDF) P(X) is defined equal to Pr(K) at
points of continuity, but it takes a value midway between limit values on either
side of a discontinuity.

The MDF P(Q) can be obtained from the CF by [i, Eq. (7), or 2, Eq.
(4.14))

P(X) = f-•f Im ff(Q) exp(-itX) , allX. (3)
0.

If we attempt to remove the Imaginary operation from under the integral sign,
we obtain an infinite integral since f(O) - 1. However, if we express

f(Q) = [f(f) - a(t)J + a(j) , (4)

where a(O) = 1, and split (3) into two integrals, we can move the Imaginary
operation out of the first integral in (3). One particularly useful choice for
a(Q), which results in a closed form expression for the second integral in (3),is

a () exp j _ "1•'9 ,2 j > 0 . (5)

where* A and e2 are the mean and variance of RV x. The mean and vari-
ance are available from f'(O) and f"(O), If these quantities can be evaluated; Hf
not, the method to be described is still applicable with arbitrary costants udd
for u and 62. When (4) and (5) are substituted Into (3), there results [3, Eq.
3.896 4; integrate both sides with respect to b]

1 f(j) a 10)

P(X) - Im d ell-ifl all X , (a)

"Actually, nasd f2 could be gail med arbitrary valuts in the iore (S)i tkis
particular choice uives a eecond order fit to f(s) at the erigin.
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where

0(y) 3 dt(2r)•1/2 eV(-_t /2) (7)

Is the Gaussian CDF.

Equation (6) is now in a form where an FFT can be utilized in the Integra-
tion on t (8ee &abeotion 2.5). This equation is exact; we are not making a
Gaussian approximation in (6). There Is no problem In the integration at • -0
because, for the choice ,. i! .2 as the mean mard varianoe of RV x,

f(s) - a1 (Q) 2(a
f R1an -0+. (8)

Also, since IaQI)I decays as wp(-q0, 2 /2), the decay of the left side of (8)
for large f wil often depend on the deay of f(t)/t; this decay will dictate how
far the integral in (6) must be carried out for specified accuracy In PQ().

Other choices for a(I) are possible and sometimes rcommended. For
example, If the mem and varime oi RV x do not exdt (e.g., p(m) r-.
(1 + X2)-, all x), we might booge

a2(• - xp(-bj)* I >.o 0 .

To best match f() near the or@10, we oould choose

b -VOI a Im(O 0a4seurnzagr f(04) rel) (10)

Then by saeftltng (4) mad () IJW (3) (3, Eq. 3.914 0], we got

P(a + aromaC/b) - n J- 4 ) , aex.

(21)
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For the choice of b in (10),

f(~ - a2 (V)
0o(j) as 0+ (12)

so no problem in integration arises at the origin. We must be able to evaluate
f'(04) in this case so that b is known, and It must be real. In cases where
f'(0)4 is iot known- or Ib infinite (See Appendix A, for example), the above
methods are inapplicable, and special techniques such as subtracting out the
singularity are required.

2.2 NONNEGATIVE DWTRIBUTIONS

When RV x Is limited to nonneptlve values, some simplifications In the
general form (3) occur. (The case of nouipositive RV x can be treated In a
sinilar faslon.9 First, if X < 0 In (3), then P(X) - 0. Letting X = -a yields

2~ i r 11 (e) sinwa) + yo 004(w)J a > 0 (13)

where subscripts r and I deakote real ad Imagi& r parts, respetively.
f ( In (3)fo > , we0 t

Poo ra)aft( . X> 0(14)

or

P�-�Q uh1I T / fi( 0oo X)g X>> 0w5)

Thus, the MDF PQC) wo be oWalued kom owlaed o either the real pat
orthelmagmina psrtotthe CFf(). For XOa. astlmr(14)mor(15)is
nweenrily v"ld, and we must s to (0).
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There are computational reasons for choosing (14) over (15), or vice

versa. The first has to do with ease of calculating fr(f) versus fh(j). For

example, In Appendix A, for p(x) - 2/r (1 + x2 )-1 for x > 0, we find that

fr(j) Is a simple exponential, whereas f1(Q) is a sum of exponential integrals.
Converse examples, where fi(f) is simpler to compute, can also be found.

The second reason has to do with the rate of decay of fr(t) versus fi(j).
We have

f (V) - fdx pW) oos(x) -[dx p. 0c) oos(=x) -[dx pe(X) exp(itx), (16)
r 8' e

yo(- fdx Px) sin(jx) ofdx ponx ftjjx)= I" f j po•x). xp -,
o (17)

where subsoripts a and o denote even and odd perts, resevely. Now, ()
p(o0)> 0, then pox is di tim , attheorigin, and h(k) decMolu

for flarp f . xAneumae to

pig, -( x > 0; ) f() - a - )- (

h,,(U8),O 4(j) d*W u ft I&.W~ I, givingri"to-,, W d in(14
Ut osoanbe twnne d o•,ar thenthe =* in (15). On do otbew had, o~mdd

that po0,a 0 wd that p and ts dwrivative an oonthmous snpt at the
otln, but p0(0 > 0. Te P o0 &dW Itts dlVaUlavewe oondaous, vbsts

P61t) s - - Mbos.b dd 06"1 fr(U) dea"ys on* as he ktg' 1.p

pot) - . X > 0; M~t) a (I - U)}'( ,

+S



V

Hijre (15) could be terminated earlier than (14).

The third reason has to do with the region of X of interest. For large X,
where P(Q) is near unity, Eq. (15), in the form

2Pd
1• -- P(K) T fi ) 00 ( x ' 0T( 0

is to be rý,ommended, since it is an alternating sum of small quantities and re-
tains signlhcance. EquW'on (J4), for large X, is an alternating sum of large
quantities and l"•s significance. But for small X, Eq. (14) would be recom-
mended.

Equation (15) can be immediately manipulated into a form where an FFT
can be utilized. Namely,

P(X) = 1 - ;7Re d } exp(-ikxX , > 0 . (21)

From Appendix A, we have fi(k)/t ~- x as } - 0, if ux exists and is finite.

If %,e attempt to express (14) in the form

IM A 1 f~ (k exp~i~X

we obtain an integral that does not converge at the origin. However, if we ex-
press

Q) = fr(Q) - b(Q)] + b(s), (22)

where b(0) 1 1 and b(j) is real, then (14) becomes

6



2 f r Q) bX)
PQC) 2 I ~ fid exp(iEX); + ~jd b(t) X > 0,

0 (23)

and an FFT can be used on the first integral, Preferably, the second integral
should be Integrabe in closed form. A particularly useful choice is

K ( _.1 A 2 , > ,( 4b(t) = exp 2 2 E> 0, (24)

where* IA2 is the mean-square value of RV x. This quantity is available from
f;(0) if it can be evaluated. When (24) is substituted into (23), we get (see (3)
through (7))

PQ() = 2*(-:,2) - 1 + - e (t 2 exp(i•x), X > 0.A2 
(25)

The function

in (25) if the mean-square value IA2 exists. In many cases, it decays as
fr(E)/t for large i.

The fact that MDF P(X) can be obtained from either the real or imaginary
parts of the CF for a nonnegative distribution are manifestations of the fact that
fr(E) and fj(ý) can be found from each other; in fact, they are related by HIl-
bert transforms. For p(x) = 0 for x < 0, and no impulses at the origin, we
see that[4, p. 38]

"As in the footnote to Eq. (5), 92 could be assigned any convenient value.
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f~s fdx p~x) exp(itx) dx p~x) U(x) expoitx) = 31p(x) U(x)l

3=pO,)l 313U(cX) = f•() 6(a) + = 1D + ilf(M
R 1 (26)

where U(x) is the unit step function, 3 denotes a Fourier transform, *
denotes convolution, and xi denotes a Hilbert transform. Therefore,

f W) = ix( f(W4 (27)

or

=i. Xr~'~ If (M 1, (fIx (28)

For the cases when p(x) contains an impulse at the origin of area co, the

first part of (28) is still correct, but the second part is incorrect by the addi-

tive constant co. However, we can still find fr(j) from fj(k) by utilizing the

fact that fr(0 ) = 1. Thus, either the real or the imaginary part of the CF con-

stitutes complete knowledge about the MDF in the case of a nonnegative dis-

tribution.

2.3 DISCRETE DISTRIBUTIONS

In this subsection, the RV x is restricted to take on values that are mul-

tiples of some fundamental Increment A, and can be either positive or nega-

tive. Although the equations in Subsection 2.2 are applicable here, it Is advan-

tageous to have forms for the distribution function that require finite integrals

rather than infinite ones. We have for the PDF

p(x) Fa _ok 6(x - kA) (29)

k

8



where the sum ranges from -oto a*. The CDF Pr(M) for integer M to

given in Reference 1, Eqs. (20) through (26). All the Integrals are finite inte-
grals except for the one in (2C) for MDF value P(0);

P(0)= -; /d .
0

We now rectify this situation and obtain a finite integral for P(0) also.
From Reference 1, Eq. (15),

"-WA
ek t Qr d f(j) exp(-ik,&t). (0)

Therefore, by using Appendix B and f(-t) = f*(Q), we get

• Ck f Q•rL&d f(• = exp(ikAt)

k=-00o-7/4% k

iJ dt f(k) L + Ir bl(A - k2r) + i cot

r/j2 k 2 \/

="2Co + +1- I w f dtf Q~) cot 2

1o+1l

?nA fi(OC 0 + 2 2' " f' d • • . (31)
0

Then, we obtain the desired result

9



P(0) a k 2 o 2ir Q tan(At/2) " (32)

k = -O

As E - 0+, the integrand of (32) approaches 2jx/A if l'x exists and is
finite. (There is no integral expression for P(0) in terms of fr(t). Since fr(Q)
is the Fourier transform of Pe(x) (See Eq. (16)), and since

#0dx pe(X)

irrespective of the form of p(x), fr(t) contains no information about P(O).
This is analogous to the general distribution case where P(O) follows from
(3) as

0

2.4 NONNEGATIVE DISCRETE DISTRIZITTIONS

When RV x is limited to nonnegative values, ih, CDF Pr(M) takes on
forms requiring either the real or Imaginary parts of the IF for its evaluation,
just as in S6bsection 2.2. To see this, we note that ck in (291 is zero for
k < 0. By letting k = -m in (30), we get

fdQ sin(m )(•)yo f = d os(m ) f (r) for m > 0 . (33)

foosmo~
0 0

When we employ (33) into (30) for k > 0, we get

C - 2- d/ coskAe) f (i), k > 0 , (34)k 0j
0

10



or

0k-- f dt sin(kit) fp(), k > 0. (35)
0

Therefore, the CDF Pr(M) for integer M is given by

Pr(M , = E ck r 2/
k=O 0 k=0

=i [( /)dt fr(W) (36)

or sin a

where we have used (34), (30), the fact that f(-J) - f*(J), and Eq. 1.342 2 in
Reference 3. Equation (36) enables evaluating the CDF in terms of the real
part of the CF alone.

To represent Pr(M) in terms of fi(J)p Ate first note that for nomnegutive
RV, the general formula for P(0) in (32) becomes

P(0) 4 dt (37)
=2 0 • 2 .2r tan(AJ/2)"

0

Now,

Pr(M) 0 +  dj f1(Q) sin(kAJ)

k=O k-1



F/A coo +

=1- di f1 () 2 )j ']I Ma 0 (38)

where we have employed (35), (37), and Eq. 1.342 1 in Reference 3. Equation
(38) is complementary to (36) in the sense that only the imaginary part of the
CF is necessary for evaluating the CDF. The reasons given In Subsection 2.2
for selecting (36) or (38) in a particular application are again relevant.

2.5 USE OF FFT FOR FOURIER TRANSFORMS

Many of the integrals in this report take the form

[dr g(t) exp(-l2rft)

Suppose a limit T on the Integration can be found such that

[cdt g(t) exp(-i2rft) < for all f , (39)
T

where # is some specified tolerance or error. Then, attention can be focused
on evaluating

GTO) .idt g(t) exp(-/2rft). (40)

Since the integration in (40) is over an interval of length T, it is seen that
l(i) will undergo a significant change in value in an interval no smaller than
lrIn f. Thus, one might initially anticipate that (40) should be evaluated at
values of f = n/T, n = I, 2,.... However, in many cases, this resolution,
1A1, may be much too fine, and be the result of satis~lng (39) wlth a very
small . In such cases, values of GT() at some multiple of the fundamental

12



resolution may be satisfactory, say m/T, where m is an integer. Thus, we

might be interested only in evaluating GTnm ) u = 1, 2, .... But from (40)

GT(nT) =fdt g(t) exp(-i2rnmt/T)
0

Mr-i (k+l)T/m

E f dt g(t) exp(-i2rnmt/T). (41)

k=0 kT/m

In making the substitution u = t - kT/m in (41) and defining the collapsed

function

M1
g +ku 05 u__5T/m

kc=u)]= k= 'M (42)

0 otherwise

we note that (41) becomes

GT(n I) ' du go(U) exp(-12Tm u). (43)
0

The collapsed function gk is obtained from g by "pre-aliasing" g into the

interval T/m. If we define the Fourier transform of go as

G f) du go(u) (-2fu)(44)

then (43) yields

13



GT~ r G~ RA (45)That is, GTrM ca~n be evaluated at f nm/T, 2m/T. .... in terms of the

Fourier transform of the collapsed function.

Now suppose g.(u) is sampled at increments of h In (44), where
T/m

The approximation in (46) will be good if go and the exponential are sam-
pled frequently enough. Thus, if the exponential Is not to vary by more than a
radian between samples, we require

1fI - (47)

When (45) through (47) are combined, the desired values are given by

GT(n G) -G(n 8) o( ) h Wk g0 pI e -i2*WM) (48)

, 0 F, Wk . 14W
k-0

If

In! •" < or i < 1 (4)

By defining

For exaemple. Simpson's rule has W a 1/3. '2.41 a 4/3, '2.46 2/3. wN a1/3.

14



hk c•• S i -

d (50)
IWO go(O) + hW. g,(/,-), k- 01

we can express (48) as

M-1

GT(n) -ýT)a G (n2T) ~ (n ~)~ dk exp(-i2ukn/M14 (51)
c c-

which is an M-point discrete Fourier transform (DFT) of the sequence dkJ.
The factor 1/r In the upper bound on I ni In (49) is due to the allasing In
frequency domain that takes place at In I M/2. Jn fact, letting fwkj} be the
samples of waveform w(t) at t = kh and W(t) its Fourier transform, it can
be shown that (Appendix C)

AG .( sw f - kM (52)

Thus tOn value MmT ) tocomposdo at least two overlapping tails ofI %(). In order to avoid th)s altasing, we must observe (49).

M
To summarize, the values of GT) at a , are given apprdmately

as an U-point DFT in (51) of tho seqwmo.Id In (50). When (42) Is substi-
tuted into (50), this seqnsemo can be express as

Asis obvious from (56), lilt muitstill1be ealaedfom 0 to T In mre.-
i d h, th5t Is at m + 1 vaism. o , ilasing r the

1T5



size of the FFT from mM to M, with an attendant reduction in computation
time and round-off error. This method is related to one given in Refer-
ence 5, 1). 81.

In applying this technique to numerical Integration of CF's, since the ex-
ponentials take the form exp±IL•X), we note that the increment in X at which
values are obtained by employing an FFT are 2r/T, or 2rm/T for coarser
resolution as above.

3. CONCLUSIONS

Several alternate forms for direct numerical evaluation of the CDF or
MDF from the CF have been presented that have utility in different situations,
Including ease of calculation, rate of decay of the integrands, and the probabil-
ity region of interest. Also, the speed of the FFT anid the large number of
values of the distribution functions that are quickly available make the formulas
presented attractive in a large number of practical applications.

In the case of discrete distributions with RV that can take on positive as
well as negative values, all integrals for the CDF are flnite and over a half-
period of the CF. Reevaluation of the sines or coenes, as n (36) or (38) for
different values of M, can be avoided If one notes that

with a similar result for cosine. Thus, If a table of sinfa) and cos(a) for the
values of a (AQ) is construottd, this recurrence relation can be used to obtain
the higher order M-dependence required in (36) and (36) without reevaluating
sines and cosnes.
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Appendix A

BEHAVIOR OF WNTEGRAIND OF EQ. (3) AT ORIGIN

The integrand of (3) is given by

1 f(- co,(Mx) fr(O) sin(JX)
Im I f(t) exp(-ikX)j = -

where subscripts r and i denote real and imaginary parts, respectively.
-Now,

f r () sin(tx)
-X as 0-.O+.

And

YiO 0os60)
=f (X p(x) cos(OX)

-fdx x p(x) - as t -0 0+ if ox exists and is finite.

Here Ax is the mean of RV x. Therefore, the integrand of (3) approaches

Aý -X as -0+ if exists andisfinite.x

An example where px is infinite is given by

0, x< 0

P(X 2/r x > 0

19



Then, Al

f r exp(-IfI),

fp() = sp(k) jep(- Il) Ei(Ifl) - exp(fl~) Ei(- I[I)l

Since A

1 2 3)Ei(-I[I) In IE +C - +I +•'I2 +O(1e[ asi[ - 0,

E(I([I)ln In It +C + [t[ I [[ +O(I[ a ItI -" 0 ,

there follows

f) a sgn() Ix (-1n j I + 1 -(C + It 1 + 0 fl

; as 0- O.

Therefore,

fi(t) eos(tx) 2
T ~; In as 0t- 0,

which is unbounded, but integrable. So, in those cases where jx Is infinite,
the behavior of fi(j)/t at the orJgin must be handled carefully in order to
accurately evaluate the Integral. One possibility is to subtract out the singu-
larity and integrate it analytically.

All. S. Gradshteya and I. M. Rythik. Table of Intearals. Series and Products,
Academic Press,. New York, 1965, Eq. (3.723 1).

A2 lbid., Eqs. (8.214 1) end (8.214 2).

20



Appendix B
cc

EVALUATION OF I: exp(hix)

n=1

Consider the ordinary function

f(x) = In sin ,I' x 0 0, ±2r, ±4r,

Since (1 + x2 )-1 f(x) is absolutely integrable from -c to ®, the generalized
function f(x) corresponding to ordinary function f(x) can be defined. B1 In
fact, the generalized function f(x) equals the ordinary function f(x) (see defi-
nition 8 by LighthfllB2 ). Furthermore, the generalized function f(x) is peri-
odic, with period 2r, B3 and, therefore, can be expressed asB4

0!

f x) = cn e

The generalized function f(k) is absolutely integrable over a period, since
the ordinary function f(x) is absolutely integrable over a period. B5 There-

forb, the coefficients lent in the expansion of the generalized function f(x)
are given byB6

cn IMi dx f(x) e"1"x 1r_ dx ln Isinx e-'n r 2

r 1/2

a ;Idx ln(sin 2) coos(nx) - 2 dt ln(slint) oos(2nnt)

BiM. J. Lighthill, An Introduction to Fourier Anallis and Generalized Functions,
Cambridge University Press, New York, 1959, p. 21, definition 7.

B2Ibid, p. 25.
B3Ibid, p. 60, definition 22.

B4Ibid, p. 66, Theorem 26.
BSIbid, p. 48, definition 19.
B6Ibid, p. 66. Theorem 26, Note.
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W--2, n O=

21n1'

where we have used Eq. (4.384 3) by Gradshteyn and Ryzhik.B 7 Therefore, the
generalized function In I sin(x/2) [ can be expressed as

In 2sin =-In2- A n
a1--co0

n/0

If we define the derivative of the generalized function lnj sin(x/2)1 as the
generalized function cot(x/2)/2, differentiation of the last equation yields the
expression of the generalized function cot(x/2)/2 asB8

Scot = i• sgnn) e .
2\(2J)2 E~'n-- -- o

(This equation says that the spectrum of the generalized function cot(x/2) is
the odd impulse train. B9 ) And sinceB10

we obtain

a• (x - n2r) + _2 (2) 2,•+ en

a=-Oo nul

B7I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series and Products,
Academic Press, New York, 1965.

BeOp. cit., M. J Lighthill, p. 28, Theorem 15.

Bg1bid., p. 66, Theorem 26, Eq. (36).

Bl0lbid., p. 67, Example 38.
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or

e -S'+ •€• -•) + i 2. c ot

in the sense of generalized functions.
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Appendix C

ALIASED SPECTRUM

If we define the infinite impulse train

ah(t) 6t5(t - nh)
n

and use the time-limited character of go, as given In (42), it is possible to
manipulate (46) as follows:

M
A

Gc(f) = h 1:wg k)exp (-i22rfh)
S~k=0

T
=f dt wMt go~) h 'hot) exp(-i2rft)

0

=fdt w(t) go(t) h &h(t) exp(-i2rft)

- Iwo) gco) h ht)1 - WM %M • SI•M•*

-WMf *G (f - k
k

Using h T/m , we see that (52) results.
M
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